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NUMERICAL SIMULATION OF FRACTURE

Leonard G. Margolin

Los Alamos Natfonal Laboratory
Los Alamos, NM 87545

SUMMARY, A constitutive model fon rittle, and quasi-brittle materials {s described.
contains a microphysical description of fracture based on Griffith theory.
properties s described by effective modulus theory.
the evolution in twme of a statistical distribution of cracks 1s calculated.
based is described.

The model 1s implemented in a finite difference computer code.
mod21s usuadlly found in computer codes.
stress is presented and compared with laboratory data.
the mechanism of spall described.

INTRODUCTION

Computer simulaifon of stress wave
propagation in geologic materfals {s 2 subject of
growing importance. Interest {3 generated by such
diverse programs as 1in situ recovery of fossi)
energy, prediction of earthquakes, cratering, and
containment of underground nuclear explosions.
The characterization of matertal behavior, and in
particular of fracture, is a key element f{n
building these computer models.

The Bedded Crack Model (BCM) 4s @
constitutive model that has been developed for
numerical simulation of fracture in a brittle, or
quasi-brittie material, The B(M {s based on a
microphysical picture in which the evolution of a
statistical distribution of penny shaped cracks {s
caltculated. The BCM aJddresses tw. questions. For
a material contafning penny shapea cracks

1) how does the stress field affect the cracks -
that 1s, when cen cracks grow?

2) how do the cracks affect the material
properties - that s, what are the effective
moduli of a crackec material?

Intrinsic to the model 13 a statistical framewor«

used to describe the distribution of cracks, as a
function of size and orfentation, as 1t evolves in
time.

In the next section, we contrast the BCM
with the phenomenologic models commonly used in
computer simulations and point out some advantages
{nherent 1n a microphvsical approach. We then
hriefly describe the theoretical basis of the
wodel. Finally, we present numerical calculatfons
using the BCM.

Previous papers (1,2,3) describo the use of
BCM to simulate field events - for example,
cratering experiments 1n o1 shale where a typical
1eneth scale 1s tens of meters. In this paper, we
wil describe simulations of laboratory
experiments. We will show that the BCM {3
inherently capable of predicting the dependence uf
fracture stress on strain rate without wdditional
parameters. Also, we will ghow a simulatfon of &
gas gun experiment and spall.

PHENOMENOLOGIC VERSUS MICROPHYSICAL MODELS

There are two aspects of modeling the
fracture process. First, we must consider the
effect of the stresses on the cracks. Second, we

The Bedded Crack Model
The effect of cracks on material
Underlying the model {s a statistical framework in which
The theory upon which the model {s

Our model {s contrasted with the phenomenologic
A computational simutatfon of the strain rate dependence of faflure
A simulation of a gas qun experiment i{s presented, and



must allow for the effect of the cracks on the
material properties, and on stress wave
propagation through the material, These tvo
aspects occur simultaneously and {nteractively,
but on much different levels. The effect of
stress on the 1individual cracks s a microscwpic
process. The effect of a statistical ensemble of
cracks on material properties s a macroscopic
process. The manner in which these two processes
are rdlated to each otier allows a separation of
computer models 1n two broad categories -
phenomenologic and microphysical.

Phenomenologic models 4gnore the details of
crack growth and concentrate on describing the
effects of fracture on stress wave propagation.
In the absence of knowledge about crack growth, a
mathematical formalism analogous to plasticity
theory s used. A material property called
fracture stress is defined so that when the stress
in the material exceeds the fracture stress,
fracture “occurs” and the stress field is relaxed.
The relaxation usually involves & second material
parameter which 1s a characteristic time scale.

The concept of fracture stress as a material
nroperty is convenient and 1ntuftively appealing.
Unfortunately, 1t is not experimentally justified.
Fatlure stress as measured in the laboratory {s
found to depend on many aspects of the experiment
such as sample size and strain rate. Although the
experimental results do not support the existence
of & constant fracture stress, the results are
quite consistent with Griffith theory which we
will describe 1n the next section.

Microphysical mccels of fracture follow the
growth of cracks and use this {nformation to
calculate effective elastic moduli for the medium.
This class of models enjoys several advantages
over phenomenologic models. To begin with, the
input tc a calcutation consists cf physicall
meaniagful numbers, determined by experimenta
measurement. Because the model {3 based on
physical processes and physical properties, 1t s
capable of scaling from loboratory size
experiments up to field experiments. An
additional bonus 1s that detailed knowledge of
crack statistics can become the basis of
calculation of such [roperties as porosity,
permeab{11ty anu particle 3..> distribution.

GRIFFITH THEORY

Much work has been dune on the theory of
fracture. Much of this efrort buflds on the
griginn work of Griffith (4) and 1s based on two
deas:

1) Brittle materials contain microscopic flaws;
2)  The stability of cracks under loading can be
addressad in terms of a balance of energies.

The measured failure strength of brittle
materfais s often two orders of magnitude smaller
than theoretical estimates based on breaking
atomic bonds. Griffith postulated the existance
of tiny flaws in the matertal. The mathematical
solution for the stress field in the presence of a
flaw shows that the fluw tips act as s’ress
concentrators (5), drastically vreducing the
strength of the wateriel, Furthermore, a

statistical distribution of flaw densfty as a
function of size and orientation 1s 2 materia)
property which can be determined directly from
section and counting.

fEach microscopic flaw 1s really a tiny
crack. It {s crucfal then to understand the
conditions under which & crack can grow.
Griffith's theory fs based on the first and second
laws of thermodynamics. For a virtual extension
of the crack, Griffith compared the release of
elastic strain energy (W) with the {increase in
surface energy (S). The surface energy 1s a
macroscopic representation of the energy required
to break atomic bonds. In these terms, the
Griffith criterfon states that a crack will grow
1f the energy release exceeds the energy required
to grow the crack. Mathematically,

%[H-S] <0

where ¢ s the crack radius.

Griffith's analysis applies to two-
dimensional slits {in normal tension. We have
generalized these results to three-dimensional
cracks in a spatially uniform, but otherwise
arbitrary external stress. For cracks in the x-y
plane, where ., is positive (tensile), the crack
wil} grow {f
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Y = poisson's ratio
E = Young's modulus
T = coefficient of surfacc teasion
Equatior (2) shows that, in any external applied
stress, there is a critical crack size. Cracks
larger than critica) are unstable to growth while
smaller cracks are stable. The effect of shear
stress fs to decrease the critical crack size.

When O {s negative (compressive), the
crack is c'los“. In this case, tha energy balance
of equatfon 1 must Include the additional energy
dissipated by friction between the crack faces.
Assuming the friction has the magnitude

T = To “p 012

where T. 1s a cohesfon lndcﬂ 13 the dynamic
cnefficidnt of friction. The crack can still grow
in this case {f
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The effect of friction i3 to Increase the critical
crack size. We ucte that friction may stabilize
cracks even in the presence of large shear. We
speculate that chic {s related to the brittle-
ductile transition vbserved 1n many rocks (6).

EFFECTIVE MODULI

The presence of cracks alters the effective
elastic modull of the materfal. The effective
moduld are found from static solutions fur the
displacement field for & body containing a
statisticel distributior of cracks and subjected
to a spatially uniform, but otherwise arbitra
stress field (7). For erample, for a materfa
containing cracks bedded parallel to the x-y



plane, the effective component of compliance C 222
§s related to the compiiance of the mairfx
material CO .. by
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Hers, i{s the third moment of the crack densi
dﬂirigjtion Nfc.th) : ensity
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The dimensionless number ¥ 1is really a
measure of the amount of fracture. The inverse of
the crack density fs the volume per crack, and so
is 1{ke the cube of the distance between cracks.
Thus, % 1s the cube of the ratio of crack size to
crack spacing. When X {s approximately equal to
1, the cracks are about as big as they are far
apart. We interpret this as fragmentation. The
results of Hoenig (7) show that the effective
moduli of a randomly cracked material are reduced
to zero at Y= 9/16.

In the modulus calculation, ¢ plays the role
of an expansion parameter. To lowest order, the
interactions between cracks are f{gnored. For
larger values of ¥ , crack interactions are
accounted for by & self-consistent calculation.
The self-consistent method (7) presupposes
knowledge of the crack distribution. In
particular, a spatially random distributfon f{s
usually assumed. This cannot be a reasonable
assumption as approaches 9/16. Indeed, one can
see that this effect of crack intersections must
be second order { ¥ “).

The detafls of self-consistent corrections
to the effective module are probably not important
for calculations of stress wave propagaticn.
However, they may play an {mportant role 1f one f{s
interested {n wusing the crack statistics to
calculate fragment suize.

The effective modulus theory predicts a
reduced elastic compliance for a cracked body. A
more ac-urate picture for stress wave propagation
{s contained 1n elastic scattering theory.
Consideration of the scattering nf a wave from a
penny shaped crack leads to a dispersion relation
(8) and shows that the dynamic effective moduld
are cemplex. The imaginary part represents the
attenuatior of the wave due to energy loss in the
scattering process.

Computer modeling of the attenvation s
difficuit, for the attenuatfon {s frequency
dependent. However, the analysis (8) shows that
the attenuation of these ampl{tude {s smaller than
the fhange in modulus by an additional factor of
(kc)” wnere k {is the wave nimber. This represents
8 small effect fn most calcualtions and f{s
ignored.

As the cracks grow. the distribution evolves
and so ¥ and the effective modull vary in time.
The constitutive relation takes the form

de. 4L ]
T4 at [T} Ty

or
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Thus, the constitutive relation has the form of a
Maxweli solid, but with a variable relaxation
time.

SIZE AND STRAIN RATE EFFECT

Laboratory measurements of faflure stress
show a dependence on sample sfze. This result is
easily understood in terms of Griffith theory.
tEquation 2 may be interpreted as saying that big
cracks will commence to grow at lower stress
ievels than smaller cracks. Statistically, bigyer
samples are more likely to contain bigger cracks.
For example, a five centimeter sample cannot
contain a six centimeter crack, whereas a ten
meter sample could easily contain a six centimeter
crack.

A further analytic rosult (9) s that cracks
have an asymptotic speed of growth which {s a
fraction (/3 to 1/2) of the shear wave speed.
The exictence of this 1imit leads to a strain rate
d2pendence of failure stress. No matter how fast
the material {s T7oaded, crack growth and
consequant stress relaxation (equatfon 8) ds
1imited. Thus, at higher strain rate, & lerger
stress will be tolersted before the cracks grow
sufficiently to relax the stress,

Figure 1 - A plot of fracture stress vs, strain -
rete for ofl shale. The tricngles are the
experimental data of Grady and Kipp (10). The
s0'{d Vine represents computer simulations wit
the BCM, The two points at about 10 sec”
represent <tests along, and across the bedding
planes. Results at higher strain rates are not
sensftive to orientation with respect to the
bedding planes.

This effect is shown in figure 1. The data
are from Grady and Kipp (10).  TYhe solid 1line
represents the BCM simulation cf a tensile failure
test. in the simulation, we assumed an
exponential size dfstribution - the number of
cracks with radfus grecier than ¢ 13

N, exp (-c/c)

The results of figure 1 use only the fracture
parameters N_ and c, the fracture toughness (which

1s oqu!vnong to the constant 7 {n equation 2) and



the elastic constants.

Figur2 2 - Stress-strain curves for oil shale for
three strain rates. These curves were generated
by the BCM, and their maxima are points on the
solir curve of figure 1. Note that the relaxation
after faflure is steeper for smaller strain rates.

SPALLATION

The BCM has been d{nserted into a two-
riimensional stress wave code SHALE. The code was
used to study spallation in gas gun experiments in
terms of crack growth., We simulated a gas gun
experiment in which a cylindrical sample of of)
shale was {impacted by a high-speed projectile.
The sample {figure 3) was 4 cm long and 1 cm 1n
dismeter, We astumed the cracks were bedded fn
planes that were perpendicular to the cylindrical
axis, As a result of the impact, a compressive
pulse was generated, travelled down the axis
toward the free surface at the other end of the
sample, and was ra2flectd as a tensile wave. The
wave was about 1 ¢m {in width and -10 «bar {n
smplitude (figure 4). Details of the reflection
of this pulse from the free surface are shown 1in
figure 5.

“{gure 3 - A cylindrical sample of o01) shale for &
gas gun simiatior., The bedding planes are
perpendicular to the cylindrical axis - this is,
vertical in this figure.

Figure 4 - The stress pulse generated by impact s
shown. The horizontal axis 1s distance along the
sample axis. The pulse 13 approximately a square
wave, and is negat{ve which {s compressive by our
convention.

The growth of cracks in the sample as a
result of the reflected pulse can be described in
terms of which {s defined fn equation 6. Figure
5 shows as a functfon of position in the sample
as computed by BCM. The sharp peak represents the
Yarge growth of cracks in this regfon, leading to
a separation plane and a spall layar. The spall
layer {s approximately half as wide as the
incoming pulse. X

Figure 5 - The stress pulse 1s shown in three
stages Of its reflectton from the free surface at
the end of the sampie. Geometric ronstruction {is
consistent with the emergence of the first
significant tension about one half wave length
from the free surface.

The spallation process, as simulated by BCM,
can be described as follows. In general, cracks
can grow in tensfon, shear, or a combination of
the two as described by our generalized Griffith
criteria (equations 2 and 4). Because of the
simple geometry and the atsumed orfetation of the
cracks 1n the sample, tension is the only means of
ceusing crack growth. Figure 5 shows that during
the reflection of the wave from the free surface,
no significant tenstons develop closer to the free
surface than about one-half pulse width away.
Therefore, there s 11ttle or no crack growth in
the spall layer. Where tensfons do develop, the
crack growth fs rap{d and the fracture process



attenuates the reriected tensile wave, producing
the shorp peaks in  shown in figure 6. The sharp
peak indicates a small regfon of intensely cracked
material which has no strength - the effective
modulus relating stress to strain (equation 5) s
very small. This region represents the separatfon
plane.

’
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Figure 6 - The dimensfonal number ¥ 15 plotted
along the sample axis. The sterp peak 1s
associated with large crazk growth due to the
first emergence of the tensile relief wave.
Separation can he expected at this spot, leading
to spallation.

THE SHALE CODE

The BCM has been implemented 4n the two-
dimensforal stress wave code SHALE, SHALE 1s a
finite difference code based on the “ALE" method
(11) in which the computational mesh may have an
arbitrary velocity with respect to the materfel.
particular cases are the famii{ar Lagrangian
calculations 1n which the mesh moves with the
maierial, and tulerian calculations which employ &
fixed mesh.

In genersl, Lagrangian calculations are
preferred because they f{ntroduce the least
numerical diffusion into the results, However, in
problems with large deformations, Layrangian cells
distort, cousing loss of accuracy in the
difference approximations. In this situstfon, the
computationaf time step (which {s based on a
Courant Stability Criterfon) becomes very small,
making calculations very expensive or even
impractical.

The “ALE" method provides a powerful
alternative to Lagrangian mesh tangling and to
Eulerian diffusiveness. The calculation s run in
a Lagrange fashion untfl the mesh begins to
distort., Then a continuous rezoner {s employed
which prevents tangling and consequent loss of
accuracy. The computer prog~am 1s smart enough to
allow rezoning only where it is necessary.

Two problems arise in the simulation of wave
propagation in solids which are not important for
wave propagatfon in fluids. Both problems are
associated with the use of & constitutive relation
in piace of an equatfon cf state. The distinction
that we make fs that a constitutive relation
relates stress rate to strain rate, thus allowing
a dependence of the state on the history of the
1oading.

The first problem is associated with the use
of artifical viscosity (12) to represent shock
waves, The artifical viscosity smears the
numerical precursor to the shock over three or
four computatfonal cells. (The viscosity 1is
artifical because 1t scales with mesh spacing
which s not & physfcal quantity.) Because al}
cracks grow with the same asymptotic speed, the
shape of the precursor plays an important role in
determining the amount of fracture ahead of a
shock.

The artifical viscosfty can also change the
prediction of the spall plane location. Our
calculations in the previocus section show that the
spall depth {1s half the wavelength of the {ncoming
pulse. 1f artificial viscosity 1s allowes to
smear the pulse too greatly, 1t will also affect
the spall dapth. The cure for these effects of
artifical viscosity 1s to use sufficiently fine
computational mshes. The “ALE" technique can be
beneficfal herr 1f the rezoner is used to let fine
zones follow the shock.

The second problem found 1n solid dynamic
calculations 1s related to numerical stability.
Mathematicelly, SHALE numerically 1integrates a
coupled set of peartial differentia) equations.
The stabflity c* the f{ntegration leads to
restrictions on the size of the computational time
step such as the well-known Courant condition.

The use of a constitutive relation adds
another partial differential equatfon to the set
end alters the stability. Hicks har shown (13)
that the stability uf the calculation requires the
time step to be a fraction of the relaxation time
in equation (8). This condition 13 simple to
{mpiement, but 1s not well known.
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